Skip to main content

∞-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions

ECCV 2024

Minh-Quan Le*, Alexandros Graikos*, Srikar Yellapragada, Rajarsi Gupta, Joel Saltz, Dimitris Samaras

Abstract

Synthesizing high-resolution images from intricate, domain-specific information remains a significant challenge in generative modeling, particularly for applications in large-image domains such as digiital histopathology and remote sensing. Existing methods face critical limitations: conditional diffusion models in pixel or latent space cannot exceed the resolution on which they were trained without losing fidelity, and computational demands increase significantly for larger image sizes. Patch-based methods offer computational efficiency but fail to capture long-range spatial relationships due to their overreliance on local information. In this paper, we introduce a novel conditional diffusion model in infinite dimensions, ∞-Brush for controllable large image synthesis. We propose a cross-attention neural operator to enable conditioning in function space. Our model overcomes the constraints of traditional finite-dimensional diffusion models and patch-based methods, offering scalability and superior capability in preserving global image structures while maintaining fine details. To our best knowledge, ∞-Brush is the first conditional diffusion model in function space, that can controllably synthesize images at arbitrary resolutions of up to 4096 × 4096 pixels.


Model

CVPR_figure

Results

Citation

@article{le2024infty,
title={$$\backslash$infty $-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions},
author={Le, Minh-Quan and Graikos, Alexandros and Yellapragada, Srikar and Gupta, Rajarsi and Saltz, Joel and Samaras, Dimitris},
journal={arXiv preprint arXiv:2407.14709},
year={2024}
}